High-Energy Radiation from Magnetized Neutron Stars
by Peter Mészáros
University of Chicago Press, 1992 Paper: 978-0-226-52094-0 | Cloth: 978-0-226-52093-3 Library of Congress Classification QB843.N4M47 1992 Dewey Decimal Classification 523.8874
ABOUT THIS BOOK | AUTHOR BIOGRAPHY | TOC | REQUEST ACCESSIBLE FILE
ABOUT THIS BOOK
Neutron stars, the most extreme state of matter yet confirmed, are responsible for much of the high-energy radiation detected in the universe. Mèszàros provides a general overview of the physics of magnetized neutron stars, discusses in detail the radiation processes and transport properties relevant to the production and propagation of high-energy radiation in the outer layers of these objects, and reviews the observational properties and theoretical models of various types of neutron star sources.
AUTHOR BIOGRAPHY
Peter Mészáros is professor of astronomy and astrophysics at Pennsylvania State University. A theoretical astrophysicist specializing in the fields of high-energy astrophysics and cosmology. He has contributed more than a hundred papers to the literature and has been at the forefront of theoretical developments in the radiative properties of magnetized neutron stars since the first cyclotron line measurements were made in 1977.
TABLE OF CONTENTS
Preface
Acknowledgments
1. Neutron Stars: An Overview
1.1. Formation
1.2. Neutron Star Physical Parameters
1.3. Structure of the Envelope and the Interior
1.4. Production of High-Energy Radiation from Magnetized Neutron Stars
1.5. Observations of High-Energy Radiation from Neutron Stars
2. Physics in a Strong Magnetic Field
2.1. Classical Motion of Charged Particles
2.2. The Onset of Quantum Effects in a Strong Magnetic Field
2.3. Quantum Treatment of the Electron in a Magnetic Field
2.4. Atomic Structure in a Strong Magnetic Field
2.5. Classical Electrodynamics in the Weak-Field Limit
2.6. Quantum Electrodynamics in Strong Fields
3. Magnetized Plasma Response Properties
3.1. Classical Wave Propagation in a Magnetized Plasma
3.2. Normal Modes of the Cold Magnetized Plasma
3.3. Quantum Mechanical Derivation of the Dielectric Tensor
3.4. Vacuum Polarizability Effects in Strongly Magnetized Plasmas
3.5. Thermal and Quantum Effects in the Nonrelativistic Limit
3.6. Validity of the Normal Mode Description
4. Magnetized Radiative Processes: Nonrelativistic Limit
4.1. The Radiation Process in an External Field
4.2. Electron Scattering in a Cold Plasma
4.3. Compton Scattering in a Hot Plasma
4.4. The Coulomb and Bremsstrahlung Processes
5. Relativistic Radiation Processes
5.1. Relativistic Cross Sections and Rates
5.2. Relativistic Redistribution Functions
5.3. Relativistic Wave Propagation
5.4. Synchrotron Radiation
5.5. Magnetic Pair Production and Annihilation
5.6. Other Magnetic Effects
6. Radiation Transport in Strongly Magnetized Plasmas
6.1. The Transport Equation
6.2. Approximate Solutions of the Polarized Transfer Equations
6.3. Numerical Treatments of the Transport Equation
6.4. Magnetic Comptonization Effects
6.5. Nonlinearities in Radiation Transport
7. Accreting X-Ray Pulsars
7.1. Observational Overview
7.2. Accretion Flow and Magnetosphere Models
7.3. The Accretion Column: Dynamics and Geometry
7.4. Negligible Radiation Pressure Models
7.5. Models with Radiation Pressure
7.6. Spectrum and Pulse Shape Models
8. Rotation-powered Pulsars
8.1. Observational Overview
8.2. The Standard Magnetic Dipole Model
8.3. Polar Cap Models
9. Gamma-Ray Bursters
9.1. Observational Overview
9.2. Gamma-Ray Burster Models and Energetics
9.3. Spectrum Formation in GRBs
10. Super-High-Energy Gamma-Ray Sources
10.1. Observational Overview
10.2. Models of VHE-UHE Gamma-Ray Sources
11. Evolution of Neutron Stars
11.1. Stellar Evolution of Neutron Star Systems
11.2. Thermal Evolution of Neutron Stars
11.3. Rotational Evolution of Neutron Stars
11.4. Magnetic Evolution of Neutron Stars
Appendix A: Relativistic Electron Wave Functions and Currents
Tables
References
Index
REQUEST ACCESSIBLE FILE
If you are a student who cannot use this book in printed form, BiblioVault may be able to supply you
with an electronic file for alternative access.
Please have the accessibility coordinator at your school fill out this form.
High-Energy Radiation from Magnetized Neutron Stars
by Peter Mészáros
University of Chicago Press, 1992 Paper: 978-0-226-52094-0 Cloth: 978-0-226-52093-3
Neutron stars, the most extreme state of matter yet confirmed, are responsible for much of the high-energy radiation detected in the universe. Mèszàros provides a general overview of the physics of magnetized neutron stars, discusses in detail the radiation processes and transport properties relevant to the production and propagation of high-energy radiation in the outer layers of these objects, and reviews the observational properties and theoretical models of various types of neutron star sources.
AUTHOR BIOGRAPHY
Peter Mészáros is professor of astronomy and astrophysics at Pennsylvania State University. A theoretical astrophysicist specializing in the fields of high-energy astrophysics and cosmology. He has contributed more than a hundred papers to the literature and has been at the forefront of theoretical developments in the radiative properties of magnetized neutron stars since the first cyclotron line measurements were made in 1977.
TABLE OF CONTENTS
Preface
Acknowledgments
1. Neutron Stars: An Overview
1.1. Formation
1.2. Neutron Star Physical Parameters
1.3. Structure of the Envelope and the Interior
1.4. Production of High-Energy Radiation from Magnetized Neutron Stars
1.5. Observations of High-Energy Radiation from Neutron Stars
2. Physics in a Strong Magnetic Field
2.1. Classical Motion of Charged Particles
2.2. The Onset of Quantum Effects in a Strong Magnetic Field
2.3. Quantum Treatment of the Electron in a Magnetic Field
2.4. Atomic Structure in a Strong Magnetic Field
2.5. Classical Electrodynamics in the Weak-Field Limit
2.6. Quantum Electrodynamics in Strong Fields
3. Magnetized Plasma Response Properties
3.1. Classical Wave Propagation in a Magnetized Plasma
3.2. Normal Modes of the Cold Magnetized Plasma
3.3. Quantum Mechanical Derivation of the Dielectric Tensor
3.4. Vacuum Polarizability Effects in Strongly Magnetized Plasmas
3.5. Thermal and Quantum Effects in the Nonrelativistic Limit
3.6. Validity of the Normal Mode Description
4. Magnetized Radiative Processes: Nonrelativistic Limit
4.1. The Radiation Process in an External Field
4.2. Electron Scattering in a Cold Plasma
4.3. Compton Scattering in a Hot Plasma
4.4. The Coulomb and Bremsstrahlung Processes
5. Relativistic Radiation Processes
5.1. Relativistic Cross Sections and Rates
5.2. Relativistic Redistribution Functions
5.3. Relativistic Wave Propagation
5.4. Synchrotron Radiation
5.5. Magnetic Pair Production and Annihilation
5.6. Other Magnetic Effects
6. Radiation Transport in Strongly Magnetized Plasmas
6.1. The Transport Equation
6.2. Approximate Solutions of the Polarized Transfer Equations
6.3. Numerical Treatments of the Transport Equation
6.4. Magnetic Comptonization Effects
6.5. Nonlinearities in Radiation Transport
7. Accreting X-Ray Pulsars
7.1. Observational Overview
7.2. Accretion Flow and Magnetosphere Models
7.3. The Accretion Column: Dynamics and Geometry
7.4. Negligible Radiation Pressure Models
7.5. Models with Radiation Pressure
7.6. Spectrum and Pulse Shape Models
8. Rotation-powered Pulsars
8.1. Observational Overview
8.2. The Standard Magnetic Dipole Model
8.3. Polar Cap Models
9. Gamma-Ray Bursters
9.1. Observational Overview
9.2. Gamma-Ray Burster Models and Energetics
9.3. Spectrum Formation in GRBs
10. Super-High-Energy Gamma-Ray Sources
10.1. Observational Overview
10.2. Models of VHE-UHE Gamma-Ray Sources
11. Evolution of Neutron Stars
11.1. Stellar Evolution of Neutron Star Systems
11.2. Thermal Evolution of Neutron Stars
11.3. Rotational Evolution of Neutron Stars
11.4. Magnetic Evolution of Neutron Stars
Appendix A: Relativistic Electron Wave Functions and Currents
Tables
References
Index
REQUEST ACCESSIBLE FILE
If you are a student who cannot use this book in printed form, BiblioVault may be able to supply you
with an electronic file for alternative access.
Please have the accessibility coordinator at your school fill out this form.
It can take 2-3 weeks for requests to be filled.
ABOUT THIS BOOK | AUTHOR BIOGRAPHY | TOC | REQUEST ACCESSIBLE FILE